# Structural inpaiting



Huy V. Vo Ngoc Q. K. Duong Patrick Pérez



## Visual inpainting at large

- □ The task of filling in a plausible way a region in an image
- Variety of forms and names: completion, reconstruction, disocclusion, hallucination, recovery,...
- Numerous applications: restoration and editing of visual content



damaged image

restored image



Image w. missing region Our inpainted image



## Visual inpainting at large

(a) Single texture: many satisfactory fillings (with generic tools) exist [1]

(a)

(b) Multiple textures, the interface between the textured regions restricts reconstruction freedom



Patch-based inpainting: greedy approaches [2] or iterative optimization-based approaches [3]

[1] Efros and Leung, "Texture synthesis by non-parametric sampling," In Proc. Int. Conf. Computer Vision, 1999
[2] Criminisi et al., "Region filling and object removal by exemplar-based image inpainting," IEEE Trans. Image Processing, 2004
[3] Arias et al., "A variational framework for exemplar-based image inpainting," Int. J. Computer Vision, 2011



## Visual inpainting at large

#### (c) Single or multiple structures: filling-in is very contrived



#### (d) Content with strong semantics: the most challenging case



Patch-based approach [3] or DNN-based approach [4]
 Class-specific inpainting [5]: requires the training of a class-specific appearance model

[3] Arias et al., "A variational framework for exemplar-based image inpainting," Int. J. Computer Vision, 2011
[4] Pathak et al., "Context encoders: Feature learning by inpainting," In Proc. CVPR, 2016
[5] Raymond et al., "Semantic Image Inpainting with Deep Generative Models," In Proc. CVPR 2017



## Context encoder (CE)

- A deep encoder-decoder architecture trained to reconstruct images with missing parts [4]
- Ability to recover complex, semantic structures is impressive in some cases where patch-based approaches are useless!



[4] Pathak et al., "Context encoders: Feature learning by inpainting," In Proc. CVPR, 2016 technicolor



### Limitations of the CE

- Surrounding context that CEs actually exploit is mostly local, sometimes only a few pixel wide with no access to visual semantics
- Poor in handling structure, possibly because the adversarial loss contributes way more to the texture than to the structure of the completed scene



[4] Pathak et al., "Context encoders: Feature learning by inpainting," In Proc. CVPR, 2016 technicolor



### Proposed structural CE



[6] Johnson et al., "Perceptual losses for real-time style transfer and super-resolution," In Proc. ECCV, 2016 technicolor



#### Post-processing

Optimization-based refinement [7]: built on variational patch-based approach, this refinement seek a reconstruction whose patches have as good matches as possible outside the hole.

correspondence field that maps each pixel in the hole to one outside

Objective function to be minimized:

$$\begin{split} E(\mathbf{x}, \psi) &= \alpha \sum_{p \in \text{hole}} \sum_{\ell \in L} \left\| \phi_{\ell}(\mathbf{x}, p) - \phi_{\ell}(\mathbf{x}, \psi(p)) \right\|_{F}^{2} \\ &+ \alpha' \sum_{\ell \in L} \left\| \phi_{\ell}(\mathbf{x}_{c}) - \phi_{\ell}(\mathbf{y}) \right\|_{F}^{2} + \beta \text{TV}(\mathbf{x}), \end{split}$$

[7] Yang et al., "High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis," Proc. CVPR, 2016



### Experimental architecture

#### Encoder-decoder network:

- ✓ Input: Color image of size 128 × 128 × 3
- Encoder: Five convolutional layers (4 × 4 filters with stride 2 and ReLU) with 64, 64, 128, 256 and 512 channels, respectively
- Bottleneck: A fully connected layer of size 2000 (half size of Pathak's)
- Decoder: Four convolutional layers mirroring the last four of the encoder. In order to avoid the checker-board effect that showed up in our first experiments, we replaced the original "deconvolutional" design by the upsampling+convolution alternative proposed in [8]
- ✓ **Output:** Color image of size  $64 \times 64 \times 3$ .

Adversarial network takes 64×64×3 inputs and is composed of four convolutional layers (4 × 4 filters and ReLU). It is lighter than the one in Pathak et al., with four times fewer parameters.

[8] Odena et al., "Deconvolution and Checkerboard Artifacts," Distill, 2016



## Results with different choices of structural loss

Trained on 1.2M images from ImageNet.





## Benefit of adversarial loss



Curriculum learning trick: proceeds with 50 epochs of training with structural loss, followed by 10 epochs of adversarial training.



## CE inpainting with different losses

The proposed combination of adversarial and structural losses provides the best results



|                 | av. $\ell_1$ error | av. $\ell_2$ error | PSNR    |
|-----------------|--------------------|--------------------|---------|
| Pathak (Paris)  | 8.37%              | 1.63%              | 19.57dB |
| ours (ImageNet) | 8.07%              | 1.49%              | 19.89dB |
| ours (Paris)    | 7.53%              | 1.35%              | 20.59dB |

#### Qualitative results.

Quantitative results on 100 ParisStreetView images.



#### **Effective context**



Inpaiting with context of 4, 12, and 36 pixels from the border.

 Robustness: structure completions are possible even with as few as 4 pixels known by the CE
 CEs contain only little object or

scene-specific knowledge.



## Results with optimization-based refinement

For each input image, inpainting by the proposed CE, before and after optimization-based refinement (top) and same for Pathak et al.'s CE (bottom).



□ For more than 83% of the images, our reconstruction was more often preferred in the user test.

51% (resp. 39%) of the images inpainted by our method (resp. Pathak's method) were considered as natural by at least 50% of participants.
 technicolor



### Failure examples



Visual/semantic complexity of the scene defeats both CEs, and patch-based methods.

### Conclusion

- □ CE with structural loss is able to complete even complex structures
- □ Semantics is playing a limited role in the CE
- Inpairing quality is significantly enhanced by optimization-based refinement

#### Future work:

- ✤ A deeper use of automatic scene understanding
- Relaxing current geometric constraints (inpainting a square domain), incorporating user's input in a seamless fashion.





#### Thank you for your attention!



Original image with missing region

Inpainted image

