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Visual inpainting at large
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� The task of filling in a plausible way a region in an image
� Variety of forms and names: completion, reconstruction, disocclusion, 

hallucination, recovery,...
� Numerous applications: restoration and editing of visual content

damaged image restored image Image w. missing region Our  inpainted image



Visual inpainting at large
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(a) Single texture: many satisfactory 
fillings (with generic tools) exist  [1]

[1] Efros and Leung, “Texture synthesis by non-parametric sampling,” In Proc. Int. Conf. Computer Vision, 1999
[2] Criminisi et al., “Region filling and object removal by exemplar-based image inpainting,” IEEE Trans. Image 
Processing, 2004
[3] Arias et al., “A variational framework for exemplar-based image inpainting,” Int. J. Computer Vision, 2011

(b) Multiple textures, the interface between the 
textured regions restricts reconstruction freedom

Patch-based inpainting: greedy approaches [2] or iterative optimization-based approaches [3]



Visual inpainting at large
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(c) Single or multiple structures: 
filling-in is very contrived

[3] Arias et al., “A variational framework for exemplar-based image inpainting,” Int. J. Computer Vision, 2011
[4] Pathak et al., “Context encoders: Feature learning by inpainting,” In Proc. CVPR, 2016
[5] Raymond et al., “Semantic Image Inpainting with Deep Generative Models,” In Proc. CVPR 2017

(d) Content with strong semantics: 
the most challenging case

� Patch-based approach [3] or DNN-based approach  [4]
� Class-specific inpainting [5]: requires the training of a class-specific appearance model 
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Context encoder (CE)

� A deep encoder-decoder architecture trained to reconstruct images with missing 
parts [4]

� Ability to recover complex, semantic structures is impressive in some cases where 
patch-based approaches are useless!

[4] Pathak et al., “Context encoders: Feature learning by inpainting,” In Proc. CVPR, 2016
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Limitations of the CE

� Surrounding context that CEs actually exploit is mostly local, sometimes only a few 
pixel wide with no access to visual semantics 

� Poor in handling structure, possibly because the adversarial loss contributes way 
more to the texture than to the structure of the completed scene 

[4] Pathak et al., “Context encoders: Feature learning by inpainting,” In Proc. CVPR, 2016
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Proposed structural CE

[6] Johnson et al., “Perceptual losses for real-time style transfer and super-resolution,” In Proc. ECCV, 2016

Training:



Post-processing

8

[7] Yang et al., “High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis,” Proc. CVPR, 2016

Objective function to be 
minimized:

� Optimization-based refinement [7]: built on variational patch-based approach, 
this refinement seek a reconstruction whose patches have as good matches as 
possible outside the hole.

correspondence field that maps each 
pixel in the hole to one outside



Experimental architecture
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Encoder-decoder network:
✔ Input: Color image of size 128 × 128 × 3
✔ Encoder: Five convolutional layers (4 × 4 filters with stride 2 and ReLU) with 64, 

64, 128, 256 and 512 channels, respectively
✔ Bottleneck: A fully connected layer of size 2000 (half size of Pathak’s)
✔ Decoder: Four convolutional layers mirroring the last four of the encoder. In order 

to avoid the checker-board effect that showed up in our first experiments, we 
replaced the original “deconvolutional” design by the upsampling+convolution 
alternative proposed in [8]

✔ Output: Color image of size 64 × 64 × 3.

Adversarial network takes 64×64×3 inputs and is composed of four 
convolutional layers (4 × 4 filters and ReLU). It is lighter than the one in Pathak 
et al., with four times fewer parameters.

[8] Odena et al., “Deconvolution and Checkerboard Artifacts,” Distill, 2016



Results with different choices of structural loss
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Trained on 1.2M images from ImageNet.



Benefit of adversarial loss
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Structural loss alone: 
grid-like artifacts

Structural loss + 
adversarial loss

Curriculum learning trick: proceeds with 50 epochs of training with structural 
loss, followed by 10 epochs of adversarial training.



CE inpainting with different losses
The proposed combination of adversarial and structural losses provides the best results
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Qualitative results.

Quantitative results on 100 
ParisStreetView images.



Effective context
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Inpaiting with context of 4, 12, and 36 
pixels from the border.

� Robustness: structure completions 
are possible even with as few as 4 
pixels known by the CE

� CEs contain only little object or 
scene-specific knowledge.



Results with optimization-based refinement
For each input image, inpainting by the proposed CE, before and after optimization-based refinement (top) 
and same for Pathak et al.’s CE (bottom).
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� For more than 83% of the images, our reconstruction was more often preferred in the user test.
� 51% (resp. 39%) of the images inpainted by our method (resp. Pathak’s method) were considered 

as natural by at least 50% of participants.



Failure examples
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Visual/semantic complexity of the scene defeats both CEs, and 
patch-based methods.



� CE with structural loss is able to complete even complex structures
� Semantics is playing a limited role in the CE
� Inpaiting quality is significantly enhanced by optimization-based refinement

Future work:
❖ A deeper use of automatic scene understanding
❖ Relaxing current geometric constraints (inpainting a square domain), 

incorporating user’s input in a seamless fashion.
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Conclusion

Original input Inpainted image
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Your comments & 
questions?

Original image with 
missing region

Inpainted image

Thank you for your attention!


