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Goal: filling in a plausible way a region in an image, better

handling structure than the prior art.

Application: restoration and editing of visual content

Context Encoder (CE) [1]:
➢ A deep encoder-decoder architecture trained 

to reconstruct images with missing parts

➢ Ability to recover complex scene in some cases 

where patch-based approaches are useless 

❖ Limitation: (1) poor handling of structures

(2)  little access to visual semantics

Proposed structural CE Optimization-based refinement [3]

(a) Single texture: many 

satisfactory fillings exist

(b) Multiple textures, the interface 

between the textured regions restricts

reconstruction freedom

(c) Single or multiple structures:

filling-in is very contrived

(d) Content with strong 

semantics: the most 

challenging case CE for image inpaiting (image is from [1]).

Training:

➢ Objective function to be minimized:

CE inpainting with different losses: qualitative results (above) 

and quantitative results on 100 ParisStreetView images (below). 

The proposed combination of adversarial and structural losses

provides the best results.

Effective context: inpaiting with context of 4, 12, and 36

pixels from the border. Structure completions are possible

even with as few as 4 pixels known by the CE → CEs

contain only little object or scene-specific knowledge!

Failure examples: Visual/semantic complexity of the 

scene defeats both CEs, and patch-based methods.

CE inpainting followed by optimization-based refinement: For each input image,

inpainting by the proposed CE, before and after optimization-based refinement (top)

and same for Pathak et al.’s CE (bottom). Each row contains scenes that are related in

a way: Flag graphics; Simple rigid structures; Natural non-rigid objects; Multi-texture

scenes; Birds on branches; More complex rigid structures.

Encoder-decoder network (input is color image of size 128 × 128 × 3, output is color
image of size 64× 64× 3)

✓ Encoder: Five convolutional layers (4 × 4 filters with stride 2 and ReLU) with 64, 64, 128,
256 and 512 channels, respectively

✓ Bottleneck: A fully connected layer of size 2000 (half size of Pathak’s)

✓ Decoder: Four convolutional layers mirroring the last four of the encoder. In order to avoid
the checker-board effect that showed up in our first experiments, we replaced the original
“deconvolutional” design by the upsampling+convolution alternative proposed in [4]

Adversarial network takes 64×64×3 inputs and is composed of four convolutional layers
(4 × 4 filters and ReLU). It is lighter than the one in Pathak et al., with four times fewer
parameters.

Experimental architecture

Benefit of adversarial loss: Structural loss alone (above) gives 

grid-like artifacts; Structural loss + adversarial loss(below). Note:

adversarial loss is only added after the CE trained only with 

structural loss gives decent results.

Conclusion

➢ CE with structural loss is able to complete even

complex structures

➢ Semantics is playing a limited role in the CE

➢ Inpaiting quality is significantly enhanced by

optimization-based refinement.
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User study: with 35 participants of various ages and

occupations, for more than 83% of the tested ImageNet

images, our reconstruction was more often preferred than

Pathak’s CE. Other user studies about the quality of inpainted

images can be found in the paper.

➢ Built on variational patch-based approach, this refinement seek a reconstruction whose 

patches have as good matches as possible outside the hole. correspondence field that 

maps each pixel in the

hole to one outside


