

OBJECT DISCOVERY

- Goal: Finding locations of foreground objects in images without any form of supervision.
- Motivation:
 - A fundamental problem in Computer Vision.
 - Cho et al. [1] propose a promising method but it is just a heuristic.
- The graph of images:

CONTRIBUTION

- A new saliency score for region matches between images.
- Reformulating Unsupervised Object Discovery as an optimization problem.
- Empirically proving that the new method gives better results.

REFERENCES

- M. Cho, S. Kwak, C. Schmid and J. Ponce. Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals. In CVPR, 2015.
- 2 Y. Li, L. Liu, C. Shen and A. Hengel. Image co-localization by mimicking a good detector's confidence score distribution. In ECCV, 2016.
- 3 X. Wei, C. Zhang, Y. Li, C. Xie, J. Wu, C. Shen and Z. Zhou. Deep descriptor transforming for image co-localization. In IJCAI, 2017.
- 4 S. Manen, M. Guillaumin and L. Van Gool. Prime object proposals with randomized Prim's algorithm. In ICCV, 2013.
- 5 J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers and A. W. M. Smeulders. Selective search for object recognition. In IJCV, 2013.
- B. Hariharan, J. Malik and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012.
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

Unsupervised Image Matching and Object Discovery as Optimization

¹Département d'informatique de l'ENS, ENS, CNRS, PSL University, Paris, France ⁵University of Oxford

OBJECT DISCOVERY AS OPTIMIZATION

Region proposals:

- Objective function:
 - \triangleright Image *i* is represented by a binary vector x_i of length p_i .
 - The neighborhood of image i is represented by a binary vector e; of length n.
 - \triangleright There is a matrix S_{ii} of size $p_i \times p_i$ containing the saliency of matches between images *i* and *j*.
 - Objective function:

$$S(x,e) = \sum_{i
eq j} e_{ij} \sum_{\substack{1 \le k \le p_i \ 1 \le l \le p_j}} S^{kl}_{ij} x^k_i x^l_j = \sum_{i
eq j} e_{ij} \langle x_i, S_{ij} x_j
angle.$$

 \triangleright Constrains: $x_i \cdot \mathbf{1}_{p_i} \leq \nu$ and $e_i \cdot \mathbf{1}_n \leq \tau$.

Similarity model:

Confidence score [1] measures the appearance similarity and geometric compatibility between regions

$$s_{ij}^{kl} = rac{a_{ij}^{kl}}{p_i p_j} \sum_{\substack{1 \le k' \le p_i \ 1 \le l' \le p_j}} K_{ij}^{kl,k'l'} a_{ij}^{k'l'}.$$

Based on the confidence score, standout score measures saliency of matches between pairs of regions

$$S_{ij}^{kl} = s_{ij}^{kl} - \max_{B_i^k \times B_j^l} S_{ij}^{kl}.$$

Original image Confidence score Standout score

Huy V. Vo^{1,2,3}, Françis Bach^{1,2}, Minsu Cho⁴, Kai Han⁵, Yann LeCun⁶, Patrick Pérez³ and Jean Ponce^{1,2}

²INRIA, Paris, France

³Valeo.ai

⁶New York university

SOLVING THE OPTIMIZATION PROBLEM

Objective as a concave function:

$$S(x,e) = \sum_{i \neq j} \sum_{\substack{1 \leq k \leq p_i \ 1 \leq l \leq p_j}} S_{ij}^{kl} \min(e_{ij}, x_l^k, x_j^l).$$

Lagrangian:

$$K(x,e;\lambda,\mu) = S(x,e) - \sum_{i}^{n} [\lambda_{i}(x_{i} \cdot \mathbf{1}_{p_{i}} - \nu) + \mu_{i}(e_{i} \cdot \mathbf{1}_{n} - \tau)].$$

► Dual problem: $\inf_{\lambda,\mu} \sup_{(x,e)\in[0,1]^*} K(x,e;\lambda,\mu)$. Solving the dual problem:

$$\begin{cases} \lambda_i^{(t+1)} = [\lambda_i^{(t)} + \alpha (x_i^{(t)} \cdot \mathbf{1}_{p_i} - \nu)]_+, \\ \mu_i^{(t+1)} = [\mu_i^{(t)} + \beta (e_i^{(t)} \cdot \mathbf{1}_n - \tau)]_+, \end{cases}$$

where

$$(x^{(t)}, e^{(t)}) = \operatorname{argmax}_{(x,e)\in\{0,1\}^*} K(x, e; \lambda^{(t)}, \mu^{(t)}).$$

Approximate primal solution:

$$(x, e) = \frac{1}{N} \sum_{t=0}^{N-1} (x^{(t)}, e^{(t)}).$$

- Rounding and greedy coordinate ascent algorithm: \triangleright In a random order of x_i , update x_i to maximize S(x, e)
 - keeping other variables fixed.
 - \triangleright Update e_i in parallel to maximize S(x, e) keeping x fixed.
- Post processing ensembling method.

RESULTS

- Datasets: Object Discovery, VOC_6x2, VOC_all.
- Metric: correct localization (CorLoc).
- Results in the separate setting:

Method	C	OD		VOC_6x2		VOC_all	
Cho <i>et al.</i> [1]	84	4.2	6	67.7	36.6		
Cho et al. (Our execution	1) 84	84.2		67.6	37.6		
Li <i>et al.</i> [2]		-				40.0	
Wei <i>et al.</i> [3]	88	88.1				46.9	
Ours	$85.8 \pm 0.669.4 \pm 0.339.2 =$					± 0.2	
Results in the mixed	settin	g:					
Method	OE	OD V(C_6x2	VOC_all		
Cho <i>et al.</i> [1]	_			- 37		7.6	
Cho et al. (Our execution)	82.	82.2		55.9		37.5	
Ours	83.0 ±	$6.0 \pm 0.4 60.2$		\pm 0.4 39.8 \pm 0		± 0.2	
Results with proposals from selective search:							
Proposals selective	e search	arch [4]		randomized		rim's [5]	
Cho <i>et al.</i> [1] 23.3	20.6	32.6		67.6			
Ours 41.4 ± 0.5 48.4	1 ± 0.5	62.8	\pm 0.6	69	.4 ± ().4	
Results with CNN fea	atures	•					
Features OD	V	/OC_6x2		VOC_all			
WHO [6] 85.8 ± 0	WHO [6] 85.8 ± 0.6 69.4 ± 0.3 39.2 ± 0.2						
CNN [7] 78.8 ± 0).4 70 .	9 ±	0.24	2.5 ±	0.1		
	1		1		1		

FUTURE WORK

- Symmetric version.
- Multiple objects.

Acknowledgments: This work was supported in part by the Inria/NYU collaboration agreement, the Louis Vuitton/ENS chair on artificial intellgence and the EPSRC Programme Grant Seebibyte EP/M013774/1. We also thank Simon Lacoste-Julien for his valuable comments and suggestions.