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OBJECT DISCOVERY

I Goal: Finding locations of foreground objects in
images without any form of supervision.

I Motivation:
. A fundamental problem in Computer Vision.
. Cho et al. [1] propose a promising method but it is just a

heuristic.

I The graph of images:

CONTRIBUTION

I A new saliency score for region matches between images.
I Reformulating Unsupervised Object Discovery as an

optimization problem.
I Empirically proving that the new method gives better results.
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OBJECT DISCOVERY AS OPTIMIZATION

I Region proposals:

I Objective function:
. Image i is represented by a binary vector xi of length pi.
. The neighborhood of image i is represented by a binary

vector ei of length n.
. There is a matrix Sij of size pi × pj containing the saliency

of matches between images i and j .
. Objective function:

S(x , e) =
∑
i 6=j

eij
∑
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. Constrains: xi · 1pi ≤ ν and ei · 1n ≤ τ .

I Similarity model:
. Confidence score [1] measures the appearance similarity

and geometric compatibility between regions

sklij =
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. Based on the confidence score, standout score measures
saliency of matches between pairs of regions

Skl
ij = sklij − max
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sklij .
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SOLVING THE OPTIMIZATION PROBLEM

I Objective as a concave function:
S(x , e) =

∑
i 6=j

∑
1≤k≤pi
1≤l≤pj

Skl
ij min(eij, x

k
I , x

l
j ).

I Lagrangian:

K (x , e;λ, µ) = S(x , e)−
n∑
i

[λi(xi ·1pi−ν) +µi(ei ·1n− τ )].

I Dual problem: infλ,µ sup(x ,e)∈[0,1]∗K (x , e;λ, µ).
I Solving the dual problem:{

λ
(t+1)
i = [λ

(t)
i + α(x

(t)
i · 1pi − ν)]+,

µ
(t+1)
i = [µ

(t)
i + β(e

(t)
i · 1n − τ )]+,

where
(x (t), e(t)) = argmax

(x ,e)∈{0,1}∗
K (x , e;λ(t), µ(t)).

I Approximate primal solution:

(x , e) =
1

N

N−1∑
t=0

(x (t), e(t)).

I Rounding and greedy coordinate ascent algorithm:
. In a random order of xi, update xi to maximize S(x , e)

keeping other variables fixed.
. Update ei in parallel to maximize S(x , e) keeping x fixed.

I Post processing ensembling method.
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RESULTS

I Datasets: Object Discovery, VOC 6x2, VOC all.
I Metric: correct localization (CorLoc).
I Results in the separate setting:

Method OD VOC 6x2 VOC all

Cho et al. [1] 84.2 67.7 36.6

Cho et al. (Our execution) 84.2 67.6 37.6

Li et al. [2] - - 40.0

Wei et al. [3] 88.1 - 46.9

Ours 85.8 ± 0.6 69.4 ± 0.3 39.2 ± 0.2

I Results in the mixed setting:
Method OD VOC 6x2 VOC all

Cho et al. [1] - - 37.6

Cho et al. (Our execution) 82.2 55.9 37.5

Ours 83.0 ± 0.4 60.2 ± 0.4 39.8 ± 0.2

I Results with proposals from selective search:
Proposals selective search [4] randomized Prim’s [5]

Cho et al. [1] 23.3 20.6 32.6 67.6

Ours 41.4 ± 0.5 48.4 ± 0.5 62.8 ± 0.6 69.4 ± 0.4

I Results with CNN features:
Features OD VOC 6x2 VOC all

WHO [6] 85.8 ± 0.6 69.4 ± 0.3 39.2 ± 0.2

CNN [7] 78.8 ± 0.4 70.9 ± 0.2 42.5 ± 0.1

FUTURE WORK

I Symmetric version.
I Multiple objects.

Acknowledgments: This work was supported in part by the Inria/NYU collaboration agreement, the Louis Vuit-

ton/ENS chair on artificial intellgence and the EPSRC Programme Grant Seebibyte EP/M013774/1. We also thank

Simon Lacoste-Julien for his valuable comments and suggestions.


