

Large-Scale Unsupervised Object Discovery

Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce NeuRIPS 2021

Extract useful information from images in form of object concepts. Many guises:

Extract useful information from images in form of object concepts.

Many guises:

Object categories discovery (Weber et al., CVPR'00, Grauman et al., CVPR'06, Russell et al., CVPR'06, Sivic et al., ICCV'05, Tang et al., CIVR'08, Tuytelaars et al., IJCV'10)

(Tuytelaars et al, IJCV'10)

Extract useful information from images in form of object concepts.

Many guises:

- Object categories discovery (Weber et al., CVPR'00, Grauman et al., CVPR'06, Russell et al., CVPR'06, Sivic et al., ICCV'05, Tang et al., CIVR'08, Tuytelaars et al., IJCV'10)
- Finding image links and/or localize objects

(Kim et al., NIPS'19, Cho et al., CVPR'15, Vo et al., CVPR'19 & ECCV'20)

(Tuytelaars et al, IJCV'10)

Extract useful information from images in form of object concepts.

Many guises:

- Object categories discovery (Weber et al., CVPR'00, Grauman et al., CVPR'06, Russell et al., CVPR'06, Sivic et al., ICCV'05, Tang et al., CIVR'08, Tuytelaars et al., IJCV'10)
- Finding image links and/or localize objects

(Kim et al., NIPS'19, Cho et al., CVPR'15, Vo et al., CVPR'19 & ECCV'20)

• Learn object representation and discover object masks (Burgess et al., 2019, Greff et al., ICML'19, Engelcke et al., ICLR'20, Locatello et al., NeuRIPS'20, Monnier et al., 2021)

(Tuytelaars et al, IJCV'10)

Prior work

Finding frequently appearing salient visual patterns: Analyse image similarities, region salient scores (*Kim et al., NeuRIPS'09; Cho et al., CVPR'15; Vo et al., CVPR'19, ECCV'20*).

Prior work

Finding frequently appearing salient visual patterns: Analyse image similarities, region salient scores (*Kim et al., NeuRIPS'09; Cho et al., CVPR'15; Vo et al., CVPR'19, ECCV'20*).

Prior work

Finding frequently appearing salient visual patterns: Analyse image similarities, region salient scores (*Kim et al., NeuRIPS'09; Cho et al., CVPR'15; Vo et al., CVPR'19, ECCV'20*).

Ranking Formulations

Input: Symmetric, weight matrix W, number of nodes N.

Output: Nodes' importance.

Quadratic optimization (Q)

- $y_i \in [0,1]$ is the importance of node $i, y = (y_1, y_2, \dots, y_N)^T$.
- Total importance of edges of node $i: c_i = \sum_j y_i W_{ij} y_j$.
- Optimization problem:

$$y^* = \operatorname*{argmax}_{y \ge 0, \|y\| \le 1} \sum_{i} c_i = y^T W y$$

• y^* is the eigenvector associated to the largest eigenvalue of W.

Edmund Landau, Deutsches Wochenschach 1895.

Ranking Formulations

Input: Symmetric, weight matrix W, number of nodes N.

Output: Nodes' importance.

PageRank

- $A = \text{normalize}_{columns}(W)$.
- PageRank matrix: $P = (1 \beta)A + \beta u \mathbb{1}_N^T$ where $\beta \ge 0$ and $u \in \mathbb{R}^N$ such that $\sum_i u_i = 1$.
- PageRank vector: Eigenvector associated to the largest eigenvalue of the PageRank matrix.
- *u* can be used to inject prior knowledge to the model, e.g., prioritize some nodes (personalized PageRank).

Brin and Page, Computer Network 1998; Page et al., Technical Report, 1999.

Ranking Formulations

Input: Symmetric, weight matrix W, number of nodes N.

Output: Nodes' importance.

Hybrid formulation (LOD)

- (Q)'s solution can be used as prior.
- Build *u* using (Q)'s solution.
- LOD: Personalized PageRank with $P = (1 - R)A + R_{1}$

 $P = (1 - \beta)A + \beta u(Q)\mathbb{1}_N^T$

Q, PageRank and LOD are all eigenvector problems.

Power iterations:

• Input: matrix $W, x^{(0)}$, norm L_p , number of iterations T.

• Repeat:
$$x^{(t+1)} = \frac{1}{\|Wx^{(t)}\|} Wx^{(t)}$$

Power iterations:

• Input: matrix $W, x^{(0)}$, norm L_p , number of iterations T.

• Repeat:
$$x^{(t+1)} = \frac{1}{\|Wx^{(t)}\|} Wx^{(t)}$$

$$Wx = \begin{pmatrix} Wx_1 \\ Wx_2 \\ \vdots \\ Wx_k \\ Wx_{k+1} \\ \vdots \\ Wx_{n-1} \\ Wx_n \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{k1} & S_{k2} & \cdots & S_{kn} \\ S_{(k+1)1} & S_{(k+1)2} & \cdots & S_{(k+1)n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{(n-1)1} & S_{(n-1)2} & \cdots & S_{(n-1)n} \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$$

Power iterations:

• Input: matrix $W, x^{(0)}$, norm L_p , number of iterations T.

• Repeat:
$$x^{(t+1)} = \frac{1}{\|Wx^{(t)}\|} Wx^{(t)}$$

$$Wx = \begin{pmatrix} Wx_1 \\ Wx_2 \\ \vdots \\ Wx_k \\ Wx_{k+1} \\ \vdots \\ Wx_{n-1} \\ Wx_n \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{k1} & S_{k2} & \cdots & S_{kn} \\ S_{(k+1)1} & S_{(k+1)2} & \cdots & S_{(k+1)n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{(n-1)1} & S_{(n-1)2} & \cdots & S_{(n-1)n} \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$$

Power iterations:

• Input: matrix $W, x^{(0)}$, norm L_p , number of iterations T.

• Repeat:
$$x^{(t+1)} = \frac{1}{\|Wx^{(t)}\|} Wx^{(t)}$$

$$Wx = \begin{pmatrix} Wx_1 \\ Wx_2 \\ \vdots \\ Wx_k \\ Wx_{k+1} \\ \vdots \\ \vdots \\ Wx_{n-1} \\ Wx_n \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{k1} & S_{k2} & \cdots & S_{kn} \\ S_{(k+1)1} & S_{(k+1)2} & \cdots & S_{(k+1)n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{(n-1)1} & S_{(n-1)2} & \cdots & S_{(n-1)n} \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$$

Power iterations:

• Input: matrix $W, x^{(0)}$, norm L_p , number of iterations T.

• Repeat:
$$x^{(t+1)} = \frac{1}{\|Wx^{(t)}\|} Wx^{(t)}$$

$$Wx = \begin{pmatrix} Wx_1 \\ Wx_2 \\ \vdots \\ Wx_k \\ Wx_{k+1} \\ \vdots \\ \vdots \\ Wx_{n-1} \\ Wx_n \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{k1} & S_{k2} & \cdots & S_{kn} \\ S_{(k+1)1} & S_{(k+1)2} & \cdots & S_{(k+1)n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ S_{(n-1)1} & S_{(n-1)2} & \cdots & S_{(n-1)n} \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{pmatrix} \quad \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} \implies \qquad Wx = \begin{pmatrix} W^1 x \\ W^2 x \\ \vdots \\ W^u x \end{pmatrix}$$

Datasets: COCO trainval (COCO120K, ~120k images), COCO_20k (~20k images), OpenImages (Op1.7M, ~1.7 million images), Op50k(~50k images).

Metrics: Correct Localization (CorLoc), Average Precision (AP).

	Single-object				Multi-object								
Method	CorLoc					AP50				AP@[50:95]			
	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	
EB [83]	28.8	29.1	32.7	32.8	4.86	4.91	5.46	5.49	1.41	1.43	1.53	1.53	
Wei [71]	38.2	38.3	34.8	34.8	2.41	2.44	1.86	1.86	0.73	0.74	0.6	0.6	
Kim [32]	35.1	34.8	37.0	-	3.93	3.93	4.13	-	0.96	0.96	0.98	-	
Vo [67]	48.5	48.5	48.0	47.8	5.18	5.03	4.98	4.88	1.62	1.6	1.58	1.57	
Ours (LOD+Self [18])	41.1	42.4	49.5	49.4	4.56	4.90	6.37	6.28	1.29	1.37	1.87	1.86	
Ours (LOD)	48.5	48.6	<u>48.1</u>	47.7	6.63	6.64	6.46	6.28	1.98	2.0	1.88	1.83	

Datasets: COCO trainval (COCO120K, ~120k images), COCO_20k (~20k images), OpenImages (Op1.7M, ~1.7 million images), Op50k(~50k images).

Metrics: Correct Localization (CorLoc), Average Precision (AP).

	Single-object				Multi-object								
Method	CorLoc					AP50				AP@	[50:95]		
	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	
EB [83]	28.8	29.1	32.7	32.8	4.86	4.91	5.46	5.49	1.41	1.43	1.53	1.53	
Wei [71]	38.2	38.3	34.8	34.8	2.41	2.44	1.86	1.86	0.73	0.74	0.6	0.6	
Kim [32]	35.1	34.8	37.0	-	3.93	3.93	4.13	-	0.96	0.96	0.98	-	
Vo [67]	48.5	48.5	48.0	47.8	<u>5.18</u>	5.03	4.98	4.88	1.62	1.6	1.58	1.57	
Ours (LOD+Self [18])	41.1	42.4	49.5	49.4	4.56	4.90	6.37	6.28	1.29	1.37	1.87	1.86	
Ours (LOD)	48.5	48.6	48.1	47.7	6.63	6.64	6.46	6.28	1.98	2.0	1.88	1.83	

Datasets: COCO trainval (COCO120K, ~120k images), COCO_20k (~20k images), OpenImages (Op1.7M, ~1.7 million images), Op50k(~50k images).

Metrics: Correct Localization (CorLoc), Average Precision (AP).

	Single-object CorLoc					Multi-object									
Method						AP50				AP@	[50:95]				
	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M			
EB [83]	28.8	29.1	32.7	32.8	4.86	4.91	5.46	5.49	1.41	1.43	1.53	1.53			
Wei [71]	38.2	38.3	34.8	34.8	2.41	2.44	1.86	1.86	0.73	0.74	0.6	0.6			
Kim [32]	35.1	34.8	37.0	-	3.93	3.93	4.13	-	0.96	0.96	0.98	-			
Vo [67]	48.5	48.5	48.0	47.8	5.18	5.03	4.98	4.88	1.62	1.6	1.58	1.57			
Ours (LOD+Self [18]) Ours (LOD)	41.1 48.5	42.4 48.6	49.5 48.1	49.4 47.7	4.56 6.63	4.90 6.64	6.37 6.46	6.28 6.28	1.29 1.98	1.37 2.0	$\frac{1.87}{1.88}$	1.86 1.83			

Datasets: COCO trainval (COCO120K, ~120k images), COCO_20k (~20k images), OpenImages (Op1.7M, ~1.7 million images), Op50k(~50k images).

Metrics: Correct Localization (CorLoc), Average Precision (AP).

	Single-object				Multi-object									
Method	CorLoc					A	P50		AP@[50:95]					
	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M		
EB [83]	28.8	29.1	32.7	32.8	4.86	4.91	5.46	5.49	1.41	1.43	1.53	1.53		
Wei [71]	38.2	38.3	34.8	34.8	2.41	2.44	1.86	1.86	0.73	0.74	0.6	0.6		
Kim [32]	35.1	34.8	37.0	-	3.93	3.93	4.13	-	0.96	0.96	0.98	-		
Vo [67]	48.5	48.5	48.0	47.8	5.18	5.03	4.98	4.88	1.62	1.6	1.58	1.57		
Ours (LOD+Self [18])	41.1	42.4	49.5	49.4	4.56	4.90	6.37	6.28	1.29	1.37	1.87	1.86		
Ours (LOD)	48.5	48.6	48.1	47.7	6.63	6.64	6.46	6.28	1.98	2.0	1.88	1.83		

Running time

[32] Kim et al., NIPS'09; [67] Vo et al., ECCV'20; [71] Wei et al., PR'19; [83] Zitnick et al., ECCV'14.

Different design choices

			Single	e-object		Multi-	object			
Opt.	Proposal	Feature	Со	rLoc	A	P50	AP@[50:95]			
			C20K	Op50K	C20K	Op50K	C20K	Op50I		
	EB <mark>83</mark>		28.8	32.7	4.86	5.46	1.41	1.53		
None	67 +Self	None	29.7	39.8	2.47	3.72	0.61	1.0		
	67 +Sup		23.6	38.1	4.07	4.81	1.03	1.39		
	Nona	Self	37.9	42.4	2.53	3.13	0.69	0.9		
wei /1	None	Sup	38.2	34.8	2.41	1.86	0.73	0.6		
Vim [20]		Self	5.5	5.4	0.64	0.79	0.13	0.15		
	ED 03	Sup	15.6	20.2	1.96	2.56	0.36	0.47		
KIIII [52]	67 +Self	Self	4.7	4.6	0.13	0.29	0.02	0.05		
	67 +Sup	Sup	35.1	37.0	3.93	4.13	0.96	0.98		
		Self	35.6	43.6	3.34	4.43	0.99	1.39		
V_{2}	ED 03	Sup	40.2	44.0	4.0	4.47	1.21	1.41		
VO 07	67 +Self	Self	37.8	48.1	2.65	4.19	0.82	1.45		
	67 +Sup	Sup	48.5	$\overline{48.0}$	5.18	4.98	1.62	1.58		
		Self	35.5	39.7	5.87	6.73	1.57	1.76		
	ED 03	Sup	38.9	41.3	6.52	7.01	1.76	1.86		
LOD	67 +Self	Self	41.1	49.5	4.56	6.37	1.29	<u>1.87</u>		
	67 +Sup	Sup	48.5	48.1	6.63	6.46	1.98	1.88		

		Feature	Single	e-object		Multi-	object	
Opt.	Proposal		Co	rLoc	A	P50	AP@[50:95]	
			C20K	Op50K	C20K	Op50K	C20K	Op50K
		Self	32.8	40.3	4.15	6.43	1.07	1.67
	ED 03	Sup	36.0	41.1	5.72	6.49	1.47	1.7
R	67 +Self	Self	38.7	<u>48.9</u>	4.38	6.39	1.17	1.84
	67 +Sup	Sup	43.8	47.5	6.21	6.66	1.74	1.88
		Self	35.5	39.7	4.91	6.73	1.34	1.75
D	ED 0J	Sup	38.9	41.3	6.51	<u>6.99</u>	1.76	1.86
r I	67 +Self	Self	41.2	49.5	4.38	6.13	1.24	1.81
	67 +Sup	Sup	<u>47.5</u>	47.8	6.25	6.19	<u>1.87</u>	1.81
		Self	35.5	39.7	5.87	6.73	1.57	1.76
	ED 03	Sup	38.9	41.3	<u>6.52</u>	7.01	1.76	1.86
LUD	67 +Self	Self	41.1	49.5	4.56	6.37	1.29	<u>1.87</u>
	67 +Sup	Sup	48.5	48.1	6.63	6.46	1.98	1.88

[32] Kim et al., NIPS'09; [67] Vo et al., ECCV'20; [71] Wei et al., PR'19; [83] Zitnick et al., ECCV'14; Gidaris et al., CVPR'21; Symonian et al., ICLR'15.

Different design choices

			Single	e-object		Multi-	-object										_
Opt.	Proposal	Feature	Co	rLoc	A	P50	AP@	[50:95]									
			C20K	Op50K	C20K	Op50K	C20K	Op50K	/			Single	e-object		Multi	-object	
	EB 83		28.8	32.7	4.86	5.46	1.41	1.53	Opt.	Proposal	Feature	<u> </u>	rLoc	Α	P50	AP@	[50.95]
None	67 +Self	None	29.7	39.8	2.47	3.72	0.61	1.0	1	1		C20K	$\frac{1200}{0050K}$	$\overline{C20K}$	$\frac{100}{0050K}$	$\frac{110}{C20K}$	$\frac{[00.90]}{0050K}$
	67 +Sup		23.6	38.1	4.07	4.81	1.03	1.39			0.10		0000		Opsok		
W 7 · 1 71	NT	Self	37.9	42.4	2.53	3.13	0.69	0.9		EB 83	Self	32.8	40.3	4.15	6.43	1.07	1.67
wei /1	None	Sup	38.2	34.8	2.41	1.86	0.73	0.6	Q	1 (7), 0, 10	Sup	36.0	41.1	5.72	6.49	1.47	1.7
		Self	elf 5.5 5.4 0.64 0.79 0.13 0.15		6/+Self	Self	38.7	$\frac{48.9}{47.5}$	4.38	6.39	1.17	1.84					
	EB 83	Sup	15.6	20.2	1.96	2.56	0.36	0.47		0/]+Sup	Sup	43.8	47.5	0.21	0.00	1.74	1.00
Kim 32	67+Self	Self	4.7	4.6	0.13	0.29	0.02	0.05		EB 83	Self	35.5	39.7	4.91	6.73	1.34	1.75
	67 +Sup	Sup	35.1	37.0	3.93	4.13	0.96	0.98	Р		Sup	38.9	41.3	6.51	<u>6.99</u>	1.76	1.86
		Self	35.6	13.6	3 3/	1 13	0.00	1 30		67+Self	Self	41.2	49.5	4.38	6.13	1.24	1.81
	EB 83	Sun	<i>4</i> 0 2	43.0	<i>J</i> . <i>J</i> +	4.43 1 17	1.21	1.39		67+Sup	Sup	<u>47.5</u>	47.8	6.25	6.19	1.87	1.81
Vo <mark>67</mark>	67 ⊥Self	Sup Self	40.2	44.0	-4.0	4.47 110	1.21 0.82	1.41 1 / 5		FR 83	Self	35.5	39.7	5.87	6.73	1.57	1.76
	$671\pm$ Sup	Sun	<i>J</i> 7.8 <i>A</i> 8 5	$\frac{40.1}{48.0}$	2.05	4.19	0.82	1.45	LOD		Sup	38.9	41.3	<u>6.52</u>	7.01	1.76	1.86
	1071+Sup	Sup	40.5	40.0	5.10	4.90	1.02	1.50	LOD	67 +Self	Self	41.1	49.5	4.56	6.37	1.29	<u>1.87</u>
	EB 83	Self	35.5	39.7	5.87	$\frac{6.73}{7.01}$	1.57	1.76		67 +Sup	Sup	48.5	48.1	6.63	6.46	1.98	1.88
LOD		Sup	38.9	41.3	<u>6.52</u>	7.01	$\frac{1.76}{1.26}$	1.86									
_ • •	67 +Self	Self	$\frac{41.1}{100}$	49.5	4.56	6.37	1.29	<u>1.87</u>									
	67 + Sup	Sup	48.5	48.1	6.63	6.46	1.98	1.88									

[32] Kim et al., NIPS'09; [67] Vo et al., ECCV'20; [71] Wei et al., PR'19; [83] Zitnick et al., ECCV'14; Gidaris et al., CVPR'21; Symonian et al., ICLR'15.

Qualitative results

Lin et al., ECCV'14; Krasin et al., 2017.

Object class discovery

Dataset/Method	Ours (LOD)	75	82	14	73	74	31	33
SIVAL1	97.4	89.0	95.3	80.4	39.3	38.0	27.0	45.0
SIVAL2	99.0	93.2	84.0	71.7	40.0	33.3	35.3	33.3
SIVAL3	88.3	88.4	74.7	62.7	37.3	38.7	26.7	41.3
SIVAL4	97.7	87.8	94.0	86.0	33.0	37.7	27.3	53.0
SIVAL5	94.3	92.7	75.3	70.3	35.3	37.7	25.0	48.3
Average	95.3	90.2	84.7	74.2	37.0	37.1	28.3	44.2

[8] Cho et al., CVPR'15; [14] Feng et al., ICCV'11; [31] Kim et al., CVPR'08; [33] Kim et al., CVPR'12; [66] Vo et al., CVPR'19; [67] Vo et al., ECCV'20; [73] Zhang et al., Transactions on Neural Networks 2011; [74] Zhang et al., Applied Intelligence 2009; [75] Zhang et al., ICCV'15; [82] Zhu et al., CVPR'12; Rahmani et al., TPAMI'08.

Discussions

Finding frequently appearing visual patterns could favorize frequent object classes than rare ones. But is practice, it is not the case.

Conclusions

Ranking formulations are effective in scaling up unsupervised object discovery.

LOD combined with self-supervised features for UOD offers a viable UOD pipeline without any supervision whatsoever.

Code: https://github.com/huyvvo