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INTRODUCTION

▶ Goal: Identify objects in a large collection of
unlabelled images.

▶ Motivation:
▷ Automatically analyze image collections.
▷ Obtain free image annotations.

▶ Recent Prior Work:
▷ Find objects that are frequently appearing visual

patterns [8, 66, 67] using a sequential algorithm:
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▷ Limitations: Does not scale well, relies on
supervised features for good performance.

CONTRIBUTIONS

▶ We formulate UOD as a ranking problem to:
▷ allow parallel and distributed solutions.
▷ scale UOD up to datasets 87 times larger than

those considered in the previous work.
▷ improve multi-object discovery performance by

up to 32% according to Average Precision.
▶ We demonstrate the first viable pipeline for

completely unsupervised object discovery using
self-supervised features.
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OVERVIEW

PROPOSED RANKING FORMULATIONS
▶ Input: Symmetric weight matrix

W , # of nodes N .
▶ Output: Nodes’ importance.
▶ A node is important if it is

well-connected and its neighbors
are important.

▶ Quadratic optimization (Q):
▷ Importance score:

yi ∈ [0, 1], y = (y1, y2, . . . , yN)
t.

▷ Total importance of edges of node i :
ci =

∑
j yiWijyj.

▷ Optimization:
y∗ = argmax

y≥0,∥y∥≤1

∑
i ci = y tWy .

▷ y∗ is the largest eigenvector of W .

▶ PageRank (P) [37,48]:
▷ Nodes are states of a Markov chain.

Transition matrix: A = W diag(1tNW )−1.
▷ PageRank matrix: P = (1− β)A + βu1

t
N

with β ∈ [0, 1] and u ≥ 0 is the
personalized vector.

▷ PageRank vector: The largest
eigenvector of P .

▶ Hybrid formulation (LOD):
▷ Q’s solution is good. Using Q to build a

personalized vector u(Q).
▷ LOD: Personalized PageRank with

P = (1− β)A + βu(Q)1tN.

▶ (Q), (P) and (LOD) are all
eigenvector problems solved with a
distributed Power iteration
implementation [68].

EXPERIMENTAL RESULTS

▶ Datasets: COCO trainval [42] (120k images), COCO20K (20k images),
OpenImages [35] (1.7 million images), Open50K (50k images).

▶ Evaluation Metrics: correct localization (CorLoc, precision of returned
boxes in single-object setting) and average precision (AP).

▶ Quantitative comparison to the state of the art:

Method
Single-object Multi-object

CorLoc (↑) AP50 (↑) AP@[50:95] (↑)
C20KC120KOp50KOp1.7MC20KC120KOp50KOp1.7MC20KC120KOp50KOp1.7M

EB [83] 28.8 29.1 32.7 32.8 4.86 4.91 5.46 5.49 1.41 1.43 1.53 1.53
Wei [71] 38.2 38.3 34.8 34.8 2.41 2.44 1.86 1.86 0.73 0.74 0.6 0.6
Kim [32] 35.1 34.8 37.0 - 3.93 3.93 4.13 - 0.96 0.96 0.98 -
Vo [67] 48.5 48.5 48.0 47.8 5.18 5.03 4.98 4.88 1.62 1.6 1.58 1.57

Ours (LOD+Self) 41.1 42.4 49.5 49.4 4.56 4.90 6.37 6.28 1.29 1.37 1.87 1.86
Ours (LOD) 48.5 48.6 48.1 47.7 6.63 6.64 6.46 6.28 1.98 2.0 1.88 1.83

▶ Run time comparison:

▶ Sample qualitative results:

▶ Object category discovery:
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Dataset LOD [75] [82] [14] [73] [74] [31] [33

SIVAL1 97.4 89.0 95.3 80.4 39.3 38.0 27.0 45.0
SIVAL2 99.0 93.2 84.0 71.7 40.0 33.3 35.3 33.3
SIVAL3 88.3 88.4 74.7 62.7 37.3 38.7 26.7 41.3
SIVAL4 97.7 87.8 94.0 86.0 33.0 37.7 27.3 53.0
SIVAL5 94.3 92.7 75.3 70.3 35.3 37.7 25.0 48.3

Average 95.3 90.2 84.7 74.2 37.0 37.1 28.3 44.2


