Ínría valeo.ai PR[A] RIE PSL

INTRODUCTION

- Goal: Boosting the performance of weakly-supervised object detectors (WSODs) with a few carefully selected fully-annotated images.
- Motivations:
\triangleright WSODs require only image tags annotation for training.
- But achieve lower performances than fully- supervised object detectors.
\triangleright We want to narrow the gap between weakly- and fully-supervised object detectors.
\triangleright WSODs suffer some well-known confusions. Addressing them will make the detectors more effective.

CONTRIBUTIONS

- We introduce a new approach to object detection that combines weakly-supervised and active learning.
- We introduce $\mathbf{B i B}$, an active selection strategy that is tailored to address the limitations of weakly-supervised object detectors.
- BiB demonstrates a better detection performance/annotation cost trade-off than both weakly- and fully-supervised object detection.
References: [6] Biffi et al., ECCV'20; [7] Bilen et al., CVPR'16; [24] Everingham et al:; [29] Gao et al., ICCV'19; [32] Girshick et al., ICCV' 15; [38] Huang et al., NeurlPS'20; [47] Lin et al., ECCV'14; [49] Pan et al., IJCA'19; [54] Ren et al., NeurlPS'15; [55] Ren et al., CVPR'20; [69] Tang et al., CVPR'17; ; 80$]$ Zeng et al., ICCV'19.

Active Learning Strategies for Weakly-Supervised Object Detection

Huy V. Vo ${ }^{1,2}$, Oriane Siméoni ${ }^{2}$, Spyros Gidaris ${ }^{2}$, Andrei Bursuc ${ }^{2}$, Patrick Pérez ${ }^{2}$ and Jean Ponce ${ }^{1,3}$

TEL AVIV 2022
${ }^{1}$ Inria and DI/ENS (ENS-PSL, CNRS, Inria) ${ }^{2}$ Valeo.ai ${ }^{3}$ Center for Data Science, New York University

EXPERIMENTAL RESULTS

- Datasets: COCO2014 [47], VOC07 [24],
- Evaluation Metrics: Average precision (AP50 and AP).
- Comparison of active learning strategies
-BiB -loss -entropy-max -entropy-sum -b-random -u-random -core-set -core-set-ent

Results (AP50) on VOCO7 (left) and COCO (right) dataset

- Examples of improved detections:

- Comparison to the state of the art:

Setting	Method	VOC07	COCO	
		AP50	AP50	AP
Fully supervised	Fast RCNN [32]	66.9	38.6	18.9
	Faster RCNN [54]	69.9	41.5	21.2
WSOD	WSDDN [7]	34.8	-	
	OICR [69]	41.2	-	-
	C-MIDN [29]	52.6	21.4	9.6
	WSOD2 [80]	53.6	22.7	10.8
	MIST-CDB [55]	54.9	24.3	11.4
	CASD [38]	56.8	26.4	12.8
Weak \& few strong (10-shot)	BCNet [49]	57.1		
	OAM [6]	59.7	31.2	14.9
	Ours (u-rand)	60.2	32.7	16.4
	Ours (BiB)	62.9	34.1	17.2

- Ablation study on VOC07:

DifS	K selection im. reg. BiB	Number of images annotated				
		50	100	150	200	250
		56.3 ± 0.4	58.0 ± 0.5	58.9 ± 0.4	60.0 ± 0.3	60.5 ± 0.4
\checkmark		56.5 ± 0.4	58.4 ± 0.4	59.3 ± 0.7	60.2 ± 0.4	61.1 ± 0.5
\checkmark	\checkmark	57.1 ± 0.4	58.3 ± 0.5	59.3 ± 0.6	59.8 ± 0.4	60.3 ± 0.4
\checkmark	\checkmark	58.4 ± 0.4	60.2 ± 0.4	61.5 ± 0.6	62.6 ± 0.4	63.4 ± 0.3
	\checkmark	57.9 ± 0.7	60.1 ± 0.4	61.2 ± 0.5	62.1 ± 0.5	62.6 ± 0.4
\checkmark	\checkmark	58.5 ± 0.8	60.8 ± 0.5	61.9 ± 0.4	62.9 ± 0.5	63.5 ± 0.4

