

INTRODUCTION

Goal: Boosting the performance of weakly-supervised object detectors (WSODs) with a *few carefully selected* fully-annotated images.

► Motivations:

- WSODs require only image tags annotation for training.
- But achieve lower performances than fully- supervised object detectors.
- We want to narrow the gap between weakly- and fully-supervised object detectors.
- WSODs suffer some well-known confusions. Addressing them will make the detectors more effective.

CONTRIBUTIONS

- We introduce a new approach to object detection that **combines** weakly-supervised and active learning.
- ► We introduce **BiB**, an active selection strategy that is **tailored** to address the limitations of weakly-supervised object detectors.
- **BiB** demonstrates a better **detection** performance/annotation cost trade-off than both weakly- and fully-supervised object detection.

References: [6] Biffi et al., ECCV'20; [7] Bilen et al., CVPR'16; [24] Everingham et al.; [29] Gao et al., ICCV'19; [32] Girshick et al., ICCV'15; [38] Huang et al., NeurIPS'20; [47] Lin et al., ECCV'14; [49] Pan et al., IJCAI'19; [54] Ren et al., NeurIPS'15; [55] Ren et al., CVPR'20; [69] Tang et al., CVPR'17; [80] Zeng et al., ICCV'19.

Acknowledgments: This work was supported in part by the Inria/NYU collaboration, the Louis Vuitton/ENS chair on artificial intelligence and the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute). It was performed using HPC resources from GENCI-IDRIS (Grant 2021-AD011013055). Huy V. Vo was supported in part by a Valeo/Prairie CIFRE PhD Fellowship.

Active Learning Strategies for Weakly-Supervised Object Detection Huy V. Vo^{1,2}, Oriane Siméoni², Spyros Gidaris², Andrei Bursuc², Patrick Pérez² and Jean Ponce^{1,3}

¹Inria and DI/ENS (ENS-PSL, CNRS, Inria) ²Valeo.ai

DISCOVER PROBABLE WSODs MISTAKES

Typical confusions of WSODs:

predictions focusing only on discriminative object parts or grouping instances of objects.

Box-in-box (BiB) pairs of regions: pairs of predictions of the same class s.t. one is "contained" in the other.

OVERALL APPROACH

Active learning pipeline:

Train a weakly-supervised object detector.

// Active learning loop

- Select images to fully label.
- Ask human annotators to draw
 - bounding boxes around objects in them.
- Fine-tune the weakly-supervised object detector with all annotations.

BiB selection:

► Find BiB pairs in all images.

kmeans++ intialization Repeat until enough images are

- selected:
 - other images.

 - chosen pair.

³Center for Data Science, New York University

EXPERIMENTAL RESULTS

Examples of improved detections:

Compute the distance between BiB pairs in selected images and those in

Pick a BiB pair with probability proportional to its distance to the pairs in selected images.

Select the image containing the

Comparison to the state of the art:

Setting	Method	VOC07	CO7 COC	
Setting	Method	AP50	AP50	AP
Fully supervised	Fast RCNN [32]	66.9	38.6	18.9
Fully supervised	Faster RCNN [54]	69.9	41.5	21.2
	WSDDN [7]	34.8	-	-
	OICR [69]	41.2	-	-
WSOD	C-MIDN [29]	52.6	21.4	9.6
VV30D	WSOD2 [80]	53.6	22.7	10.8
	MIST-CDB [55]	54.9	24.3	11.4
	CASD [38]	56.8	26.4	12.8
	BCNet [49]	57.1	-	-
Weak & few	OAM [6]	59.7	31.2	14.9
strong (10-shot)	Ours (u-rand)	60.2	32.7	16.4
	Ours (BiB)	62.9	34.1	17.2

Ablation study on VOC07:

DifS	K selection		Number of images annotated				
	im. reg	. BiB	50	100	150	200	250
			56.3 ± 0.4	58.0 ± 0.5	58.9 ± 0.4	60.0 ± 0.3	60.5 ± 0.4
\checkmark			56.5 ± 0.4	58.4 ± 0.4	59.3 ± 0.7	60.2 ± 0.4	61.1 ± 0.5
\checkmark	\checkmark		57.1 ± 0.4	58.3 ± 0.5	59.3 ± 0.6	59.8 ± 0.4	60.3 ± 0.4
\checkmark	\checkmark		$\textbf{58.4} \pm 0.4$	60.2 ± 0.4	61.5 ± 0.6	62.6 ± 0.4	$\textbf{63.4} \pm 0.3$
		\checkmark	57.9 ± 0.7	60.1 ± 0.4	61.2 ± 0.5	62.1 ± 0.5	62.6 ± 0.4
\checkmark		\checkmark	$\textbf{58.5} \pm 0.8$	$\textbf{60.8}\pm0.5$	$\textbf{61.9}\pm0.4$	$\textbf{62.9}\pm0.5$	63.5 ± 0.4

